Identifying novel peroxisomal proteins.

نویسندگان

  • John Hawkins
  • Donna Mahony
  • Stefan Maetschke
  • Mark Wakabayashi
  • Rohan D Teasdale
  • Mikael Bodén
چکیده

Peroxisomes are small subcellular compartments responsible for a range of essential metabolic processes. Efforts in predicting peroxisomal protein import are challenged by species variation and sparse sequence data sets with experimentally confirmed localization. We present a predictor of peroxisomal import based on the presence of the dominant peroxisomal targeting signal one (PTS1), a seemingly wellconserved but highly unspecific motif. The signal appears to rely on subtle dependencies with the preceding residues. We evaluate prediction accuracies against two alternative predictor services, PEROXIP and the PTS1 PREDICTOR. We test the integrity of prediction on a range of prokaryotic and eukaryotic proteomes lacking peroxisomes. Similarly we test the accuracy on peroxisomal proteins known to not overlap with training data. The model identified a number of proteins within the RIKEN IPS7 mouse protein dataset as potentially novel peroxisomal proteins. Three were confirmed in vitro using immunofluorescent detection of myc-epitope-tagged proteins in transiently transfected BHK-21 cells (Dhrs2, Serhl, and Ehhadh). The final model has a superior specificity to both alternatives, and an accuracy better than PEROXIP and on par with PTS1 PREDICTOR. Thus, the model we present should prove invaluable for labeling PTS1 targeted proteins with high confidence. We use the predictor to screen several additional eukaryotic genomes to revise previously estimated numbers of peroxisomal proteins. Available at http://pprowler.itee.uq.edu.au.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of novel plant peroxisomal targeting signals by a combination of machine learning methods and in vivo subcellular targeting analyses.

In the postgenomic era, accurate prediction tools are essential for identification of the proteomes of cell organelles. Prediction methods have been developed for peroxisome-targeted proteins in animals and fungi but are missing specifically for plants. For development of a predictor for plant proteins carrying peroxisome targeting signals type 1 (PTS1), we assembled more than 2500 homologous p...

متن کامل

PredPlantPTS1: A Web Server for the Prediction of Plant Peroxisomal Proteins

Prediction of subcellular protein localization is essential to correctly assign unknown proteins to cell organelle-specific protein networks and to ultimately determine protein function. For metazoa, several computational approaches have been developed in the past decade to predict peroxisomal proteins carrying the peroxisome targeting signal type 1 (PTS1). However, plant-specific PTS1 protein ...

متن کامل

PeroxisomeDB: a database for the peroxisomal proteome, functional genomics and disease

Peroxisomes are essential organelles of eukaryotic origin, ubiquitously distributed in cells and organisms, playing key roles in lipid and antioxidant metabolism. Loss or malfunction of peroxisomes causes more than 20 fatal inherited conditions. We have created a peroxisomal database (http://www.peroxisomeDB.org) that includes the complete peroxisomal proteome of Homo sapiens and Saccharomyces ...

متن کامل

Peroxisomal Malfunction Caused by Mitochondrial Toxin 3-NP: Protective Role of Oxytocin

Peroxisomes are single membrane cell organelles with a diversity of metabolic functions. Here we studied the peroxisomal dysfunction and oxidative stress after 3-nitropropionic acid (3-NP) induced neurotoxicity and the possible protective effects of oxytocin. Adult male and female rats were subjected to Oxt and/or 3-NP treatment. The antioxidant enzymes, Superoxide dismutase (SOD) and Catalase ...

متن کامل

Peroxisomal Malfunction Caused by Mitochondrial Toxin 3-NP: Protective Role of Oxytocin

Peroxisomes are single membrane cell organelles with a diversity of metabolic functions. Here we studied the peroxisomal dysfunction and oxidative stress after 3-nitropropionic acid (3-NP) induced neurotoxicity and the possible protective effects of oxytocin. Adult male and female rats were subjected to Oxt and/or 3-NP treatment. The antioxidant enzymes, Superoxide dismutase (SOD) and Catalase ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proteins

دوره 69 3  شماره 

صفحات  -

تاریخ انتشار 2007